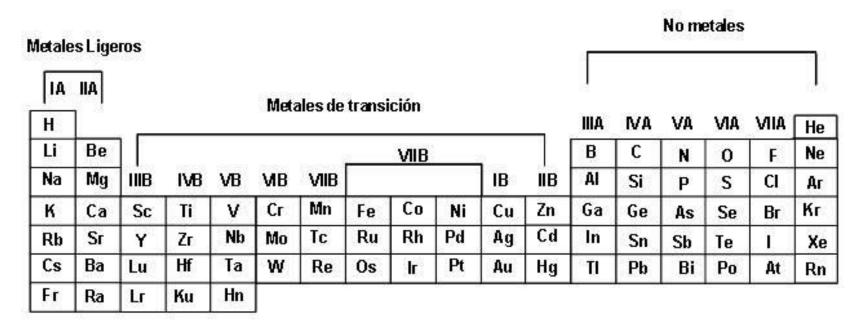
COMPUESTOS INORGANICOS

Mg. Alexandra Velandia Pardo www.alexaquim.jimdo.com

FUNCIONES INORGANICAS BÁSICAS

M: metal - Nm:no metal H: Hidrogeno - - O: Oxigeno


FUNCIÓN	ELEMENTOS	EJEMPLO FUNCIÓN
OXIDOS BÁSICOS	Metal + oxigeno	MO Na2O
OXIDOS ÁCIDOS	No metal + oxigeno	NmO (Cl2O3)
HIDRÓXIDOS	Metal + hidroxilo	MOH (NaOH)
ÁCIDOS HIDRÁCIDOS	Hidrogeno + no metal	HNm (HCl)
ÁCIDOS OXACIDOS	Hidrogeno+Nometal+oxigeno	HNmO (H2504)
SALES HIDRACIDAS	Metal + nometal	MNm (NaCl)
SALES OXACIDAS	Metal+nometal+oxigeno	MNmO (CaSO4)

FUNCIÓN INORGÁNICA	GRUPO FUNCIONAL
Óxidos	Oxígeno
Bases o Hidróxidos	OH : Hidroxilo
Ácidos	H+:Hidrogenion
Sales	lones

¿Cómo se obtienen algunos compuestos? **HIDRURO** Sal de Oxosal **METALICO** hipoclorito de hidrácido hidruro de sodio cloruro de sodio sodio NaH. NaCl **NaCIO** HIDROXIDO OXIDO BASICO hidróxido de sodio MFTAL H_2O óxido de sodio Na *+ Off sodio Na₂O OXOACIDO **OXIDO ACIDO** NO METAL ácido hipocloroso H_2O monóxido de dicloro cloro $H^+ + CiO^ CI_2O$ 五 **HIDRACIDO** HIDRURO NO **METALICO** ácido clorhídrico en solución acuosa cloruro de hidrógeno $H^{+} + CI^{-}$ HCI.

Recordemos...

1°. Números de oxidación

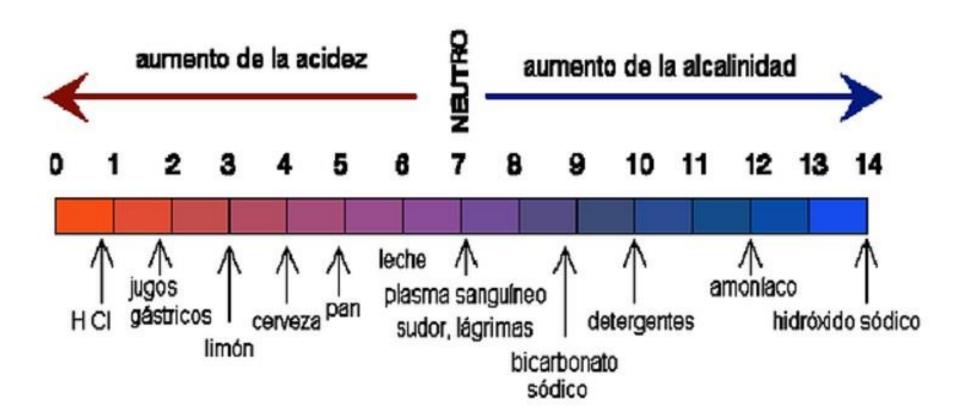
Serie de los lantánidos Serie de los actínidos

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Ег	Tm	Yb
Ac	Th	Pa	u	Np	Pu	Am	Cm	Bk	Cf	Fm	Md	No	No

Según el grupo...

Grupo	Posibles Valencias
IA	1
II A	2
III A	3
IV A	2 Y 4
V A	1, 3 Y 5
VI A	2,4 Y 6
VII A	1, 3, 5 Y 7
GRUPOS B	SE DEBE MIRAR CADA ELEMENTO EN LA TABLA PERIODICA

• Número de oxidación de un elemento es equivalente a su valencia (capacidad de combinación) con signo positivo o negativo. En la tabla siguiente se indican los estados de oxidación formales más usuales.

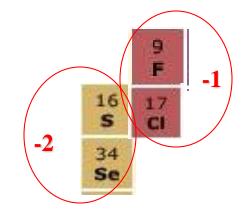

Grupo	Elementos	Estado de oxidación
Grupo 1 (IA)	H*, Li, Na, K, Rb, Cs, Fr	+1,(-1)*
Grupo 2 (IIA)	Be, Mg, Ca, Sr, Ba, Ra	+2
Grupo 6 (VIB)	Cr	+2,+3,+6
Grupo 7 (VIIB)	Mn	+2,+3,+4, +6,+7
Grupo 8 (VIIIB)	Fe	
Grupo 9 (VIIIB)	Со	+2,+3
Grupo 10	Ni	
(VIIIB)	Pd, Pt	+2,+4
Grupo 11 (IB)	Cu Ag Au	+1,+2 +1 +1,+3

Grupo	Elementos	Estado de
		oxidación
Grupo	Zn, Cd	+2
12 (IIB)	Hg	+1,+2
Grupo	В	.0.0
13 (IIIA)	Al, Ga, In, TI	+3,-3
Grupo	С	+ 2, +4
14 (IVA)	Si	- 2, - 4
	Ge, Sn, Pb	
Grupo 15 (VA)	N, P, As, Sb, Bi	+1+3+5, (+4, ,+2) -1, -3, -5
Grupo	0	-2
16 (VIA)	S, Se, Te	+2,+4,+6, -2
	(Po)	+2, +4,+6,-2
Grupo	F	-1
17	CI, Br, I, (At)	+1,+3,+5,+7,-1
(VIIA)		T1,T3,T3,T1,-1

FORMULAS Y NOMENCLATURA QUÍMICA INORGÁNICA

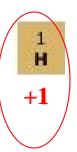
Ácidos inorgánicos

Hidrácidos

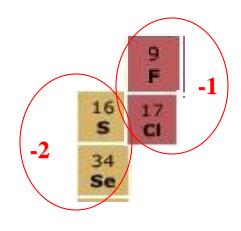

Compuestos binarios: hidrógeno + no metal (calcógeno o halógeno)

Oxoácidos

Compuestos ternarios: hidrógeno + oxígeno + elemento electronegativo

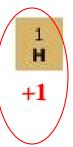

ÁCIDOS HIDRACIDOS

- HIDRUROS NO METALICOS -
 - Haluros de hidrógeno (hidruros no metálicos I): son combinaciones de un no metal (X, -n) de los grupos VI A y VII A con el hidrógeno (H, +1).

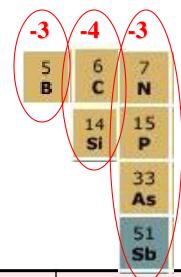


FORMULACIÓN:

NOMENCLATURA SISTEMÁTICA X-uro de prefijohidrógeno
NOMENCLATURA DE STOCK X-uro de hidrógeno (no se usa romano)
NOMENCLATURA TRADICIONAL Ácido + X-hídrico



> EL NO METAL TRABAJA CON SU VALENCIA MAS BAJA O MENOR



Ejemplos:

Comp.	Sistemática	Stock	Tradicional
HF	Fluoruro de hidrógeno	Fluoruro de hidrógeno	Ácido fluorhídrico
HCI	Cloruro de hidrógeno	Cloruro de hidrógeno	Ácido clorhídrico
H ₂ S	Sulfuro de dihidrógeno	Sulfuro de hidrógeno	Ácido sulfhídrico
H ₂ Se	Seleniuro de dihidrógeno	Seleniuro de hidrógeno	Ácido selenhídrico

Ejemplos:

Comp.	Sistemática	Stock	Tradicional	
NH ₃	Trihidruro de nitrógeno	Hidruro de nitrógeno (III)	Amoniaco	Limpieza
PH ₃	Trihidruro de fósforo	Hidruro de fósforo (III)	Fosfina	gas fumiç incoloro
AsH ₃	Trihidruro de arsénico	Hidruro de arsénico (III)	Arsina	gas muy tóxico
SbH ₃	Trihidruro de antimonio	Hidruro de antimonio (III)	Estibina	mineral opaco
CH ₄	Tetrahidruro de carbono	Hidruro de carbono (IV)	Metano	hidrocarb
SiH ₄	Tetrahidruro de silicio	Hidruro de silicio (IV)	Silano	aumentad la adhesi
BH ₃	Trihidruro de boro	Hidruro de boro (III)	Borano	Uso indu

_impieza,gas

gas fumigante

hidrocarburo

aumentador de la adhesión

Uso industrias

ÁCIDOS OXÁCIDOS

Son compuestos ternarios formados por la combinación de un no metal (también algunos metales de transición como el Cr, Mn, W, Tc, Mb, etc.), el oxígeno (de número de oxidación - 2) y el hidrógeno (+1).

- Se forman de la combinación de un
 - ÓXIDO ÁCIDO (No metales) + agua
- > Por lo tanto en su formula están presentes el
 - Hidrogeno + No Metal + Oxigeno
 - > H nM O
- > Ejemplos:
 - > HNO₃
 - > H₂SO₄
 - > HCIO

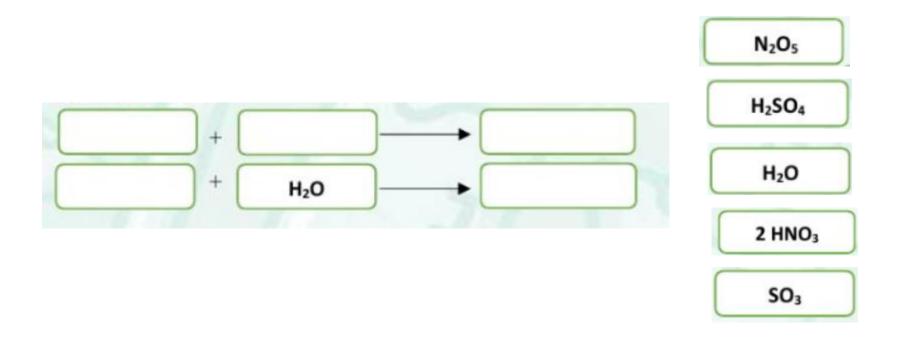
¿Cómo escribir una formula de un ácido oxácido a partir del nombre tradicional o IUPAC (oso, ico...)?

La forma mas conveniente es escribir el oxido (anhídrido) del cual proviene y sumar los átomos de agua en la formula final:

Si necesito escribir la formula del ácido perclórico debo partir del óxido perclórico (cloro+oxigeno) per....ico (valencia mayor, en este caso el cloro tiene 4 valencias 1,3,5,7, la mayor es 7)

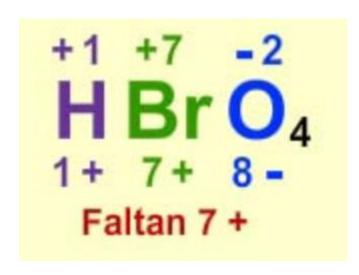
Anhídrido Agua Ácido
$$Cl_2O_7 + H_2O \longrightarrow H_2Cl_2O_8 \rightarrow HClO_4$$

Ejemplos


Ácido Sulfúrico (S
$$\rightarrow$$
VI \rightarrow 2,4 y 6)
S⁺⁶O⁻²₃ + H₂O \rightarrow H₂SO₄
Ácido Carbónico (C \rightarrow IV \rightarrow 2,4)
C⁺⁴O⁻²₂ + H₂O \rightarrow H₂CO₃
Ácido Clórico (CI \rightarrow VII \rightarrow 1,3,5,7)
Cl₂O₃ + H₂O \rightarrow H₂Cl₂O₄ \rightarrow HClO₂

- Lo mismo sucede con el ácido sulfúrico:
- SO3 + H2O → H2SO4
- Los oxoácidos se nombran utilizando la nomenclatura tradicional. Por ejemplo:
- Cl2O + H2O → H2Cl2O2 → HClO
- ácido hipocloroso
- Cl2O3 + H2O → H2Cl2O4 → HClO2
- ácido cloroso
- Cl2O5 + H2O → H2Cl2O6 → HClO3
- ácido clórico
- Cl2O7 + H2O → H2Cl2O8 → HClO4
- ácido perclórico

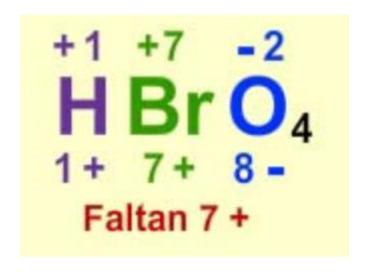
Ejercicio


Los ácidos oxácidos se obtienen añadiendo a un

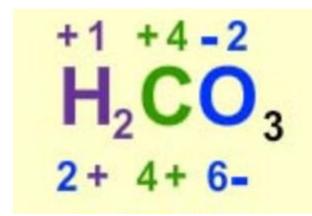
una molécula de

¿Ysi nos dan la formula como le damos el nombre?

- Recordemos la regla de números de oxidación
 - La suma de todos los estados de oxidación de una molécula debe dar cero
 - Esto se aplica también para ácidos...



- El Bromo pertenece al grupo VII A tiene valencias 1,3,5,7
- 7 es su mayor valencia


Grupo	Posibles Valencias
IA	1
II A	2
III A	3
IV A	2 Y 4
V A	1, 3 Y 5
VI A	2,4 Y 6
VII A	1, 3, 5 Y 7
GRUPOS B	SE DEBE MIRAR CADA ELEMENTO EN LA TABLA PERIODICA

Posibilidad de n. o.	Terminación
Uno	-ico
dos	n.o. menor → -oso
	n. o. mayor → -ico
tres	n.o. menor → hipooso
	n. o. intermedia → -oso
	n.o. mayor → -ico
	n. o. menor → hipooso
- cuntra	n. o. intermedio → -oso
cuatro	n. o. intermedio → -ico
	n. o. mayor → perico

Entonces...

> Acido perbrómico

- C grupo IV
- Valencias 2 y 4
- > Según formula trabaja con +4
- > Su nombre tradicional

Ácido Carbonico

Ejercicio:

Fórmula	Nomenclatura tradicional
H ₂ SO ₃	
HNO ₂	

¿Cómo escribir una formula de un ácido oxácido a partir del nombre Stock (romanos...)?

El nombre comienza también por **Ácido** después se indica el número de oxígenos con la palabra **oxo** y lo prefijos multiplicadores griegos conocidos seguido del nombre del no metal terminado en -ico y con su estado de oxidación entre paréntesis en número romanos.

Escribir la formula del ácido

Y en la sistemática?

Esta nomenclatura se basa en la estructura de los ácidos, nombrando de diferente manera los oxígenos que están unidos a los hidrógenos ácidos (hidroxido), los oxígenos unidos únicamente al no metal central (oxido). Cada uno de estos nombres se cuantifica mediante los ya conocidos prefijos numerales multiplicativos: di-, tri-, tetra-, etc. y se nombran por orden alfabético (y sin tilde) seguidos del nombre del átomo de no metal central. Es decir, el esquema sería: Prefijo-hidroxido-prefijo-oxido-NO METAL CENTRAL.

Obsoleta